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ABSTRACT 

The paper introduces OMNeT++, a C++-based discrete event 
simulation package primarily targeted at simulating computer 
networks and other distributed systems. OMNeT++ is fully 
programmable and modular, and it was designed from the 
ground up to support modeling very large networks built from 
reusable model components. Large emphasis was placed also on 
easy traceability and debuggability of simulation models: one 
can execute the simulation under a powerful graphical user 
interface, which makes the internals of a simulation model fully 
visible to the person running the simulation: it displays the 
network graphics, animates the message flow and lets the user 
peek into objects and variables within the model. These features 
make OMNeT++ a good candidate for both research and 
educational purposes. The OMNeT++ simulation engine can be 
easily embedded into larger applications. OMNeT++ is open-
source, free for non-profit use, and it has a fairly large user 
community. 

INTRODUCTION 

OMNeT++ is a C++-based discrete event simulator for modeling 
communication networks, multiprocessors and other distributed 
or parallel systems. OMNeT++ is open-source, and it can be 
used either under the GNU General Public License or under its 
own license that also makes the software free for non-profit use. 
The motivation of developing OMNeT++ was to produce a 
powerful open-source discrete event simulation tool that can be 
used by academic, educational or research-oriented commercial 
institutions for the simulation of computer networks and 
distributed or parallel systems. OMNeT++ tries to fill the gap 
between open-source, research-oriented simulation software such 
as ns (Bajaj et al. 2000) and expensive commercial alternatives 
like OPNET (OPNET Technologies, Inc.). A later section of this 
paper presents a comparison with other simulation packages. 
OMNeT++ is available on Unix systems and on Windows, using 

the Cygwin or the Microsoft Visual C++ compiler. It should also 
be possible to port OMNeT++  to other systems with minor 
effort. 

OMNeT++ has been available to the public since September 
1997, and by now it has a fairly large user community and a 
mailing list. Besides anonymous downloads, there have been 
registered downloads from over 40 universities worldwide, and 
the indicated application areas ranged from mobile/wireless to 
ATM and optical networks simulation, and from hardware 
simulations to queuing systems. There are a number of 
OMNeT++-related projects, such as the development of a 
complete TCP/IP model suite at University Karlsruhe (Kaage et 
al. 2001; Wehrle et al. 2001), the Remote OMNeT++ project 
(Erdei et al. 2001; Wagner and Erdei 2001) for managing remote 
simulations on a flock of workstations, and research on parallel 
execution, using the Statistical Synchronization Method (Lencse 
1997; Lencse 1998). 

THE DESIGN OF OMNeT++ 

OMNeT++ was designed from the beginning to support network 
simulation in the large. This objective lead to the following main 
design requirements: 

• To enable large-scale simulation, simulation models need 
to be hierarchical, and should be built from reusable 
components as much as possible. 

• Simulation programs are infamous for long debugging 
periods. Thus, the simulation software should place large 
emphasis on easy traceability and debuggability of 
simulation models to reduce debugging time. (The same 
feature set is also useful for educational use of the 
software.) 

• The simulation software itself should be modular, 
customizable and should allow embedding simulation 
models into larger applications such as network planning 
software. (Embedding brings additional requirements 
about the memory management, restartability, etc. of the 
simulation). 



• Data interfaces should be open: it should be possible to 
generate and process input and output files with 
commonly available software tools. 

The following sections go through the most important aspects of 
OMNeT++, highlighting the design decisions that helped achieve 
the above main goals. 

Model Structure 

An OMNeT++ model consists of modules that communicate 
with message passing. The active modules are termed simple 
modules; they are written in C++, using the simulation class 
library. Simple modules can be grouped into compound modules 
and so forth; the number of hierarchy levels is not limited. The 
concept of simple and compound modules is similar to DEVS 
(Zeigler 1990; Chow and Zeigler 1994) atomic and coupled 
models. Messages can be sent either via connections that span 
between modules, or directly to their destination modules. 

Both simple and compound modules are instances of module 
types. While describing the model, the user defines module 
types; instances of these module types serve as components for 
more complex module types. Finally, the user creates the system 
module as an instance of a previously defined module type. 
When a module type is used as a building block, there is no 
distinction whether it is a simple or a compound module. This 
allows the user to transparently split a simple module into 
several simple modules within a compound module, or do the 
opposite, re-implement the functionality of a compound module 
in one simple module, without affecting existing users of the 
module type. 

 

Fig. 1. Model Structure in OMNeT++. Boxes represent simple modules 
(thick border), and compound modules (thin border). Arrows 

connecting small boxes represent connections and gates. 

Modules communicate with messages which – in addition to 
usual attributes such as timestamp – may contain arbitrary data. 
Simple modules typically send messages via gates, but it is also 
possible to send them directly to their destination modules. Gates 
are the input and output interfaces of modules: messages are sent 
out through output gates and arrive through input gates. An input 
and an output gate can be linked with a connection. Connections 
are created within a single level of module hierarchy: within a 
compound module, corresponding gates of two submodules, or a 

gate of one submodule and a gate of the compound module can 
be connected. Due to the hierarchical structure of the model, 
messages typically travel through a chain of connections, to start 
and arrive in simple modules. Compound modules act as 
'cardboard boxes' in the model, transparently relaying messages 
between their inside and the outside world. Connections can be 
assigned properties such as propagation delay, data rate and bit 
error rate. One can also define connection types with specific 
properties (termed channels) and reuse them in several places. 

Modules can have parameters. Parameters are mainly used to 
pass configuration data to simple modules, and to help define 
model topology. Parameters may take string, numeric or pointer 
values. Because parameters are represented as objects in the 
program, parameters – in addition to holding constants – may 
transparently act as sources of random numbers with the actual 
distributions provided with the model configuration, they may 
interactively prompt the user for the value, and they might also 
hold expressions referencing other parameters. Compound 
modules may pass parameters or expressions of parameters to 
their submodules. Parameters can be passed by value or by 
reference. Parameters taken by reference may be used to 
propagate global model parameter changes during simulation 
execution – this technique might be very useful in certain 
simulation scenarios such as parameter optimization. 

The Design of the NED Language 

The user defines the structure of the model (the modules and 
their interconnection) in OMNeT++'s topology description 
language, NED. Typical ingredients of a NED description are 
simple module declarations, compound module definitions and 
network definitions. Simple module declarations describe the 
interface of the module: gates and parameters. Compound 
module definitions consist of the declaration of the module's 
external interface (gates and parameters), and the definition of 
submodules and their interconnection. A network definition 
basically defines a model as an instance of a module type. 

NED and the OMNeT++ model structure were designed to 
allow building models "in the large": they promote reusable 
model components via module types and unlimited compound 
module hierarchy levels. NED also supports partitioning large 
NED files into several smaller ones via file inclusion.  

The OMNeT++ package includes a graphical editor which 
uses NED as its native file format; moreover, the editor can work 
with arbitrary, even hand-written NED code. The editor is a fully 
two-way tool, i.e. the user can edit the network topology either 
graphically or in NED source view, and switch between the two 
views at any time. This is made possible by design decisions 
about the NED language itself. First, NED is a declarative 
language, and as such, it does not use an imperative 
programming language for defining the internal structure of a 
compound module. Allowing arbitrary programming constructs 
would make it practically infeasible to write two-way graphical 



editors which could work directly with both generated and hand-
made NED files. (Generally, the editor would need AI capability 
to understand the code.) 

Most graphical editors only allow the creation of fixed 
topologies. However, NED contains declarative constructs 
(resembling loops and conditionals in imperative languages), 
which enable parameterizing topologies: it is possible to create 
common regular topologies such as ring, grid, star, tree, 
hypercube, or random interconnection whose parameters (size, 
etc.) are passed in numeric-valued parameters. The potential of 
parameterized topologies and associated design patterns have 
been investigated in (Varga and Pongor 1997) and (Varga 1998). 
With parameterized topologies, NED holds an advantage in 
many simulation scenarios both over OPNET where only fixed 
model topologies can be designed, and over ns where building 
model topology is programmed in Tcl and often intermixed with 
simulation logic, so it is generally impossible to write graphical 
editors which could work with existing, hand-written code. 

The NED language can be mapped one-to-one to XML; the 
graphical editor is capable of exporting and importing XML 
files. As XML is rapidly becoming the preferred way of 
exchanging structured information between applications, the 
existence of an XML binding for NED means greater 
opportunities for interfacing OMNeT++ with other systems. As 
an example, a network topology stored in an SQL database by a 
network management program can be imported into OMNeT++ 
in two steps. First, topology data are extracted from the database 
in XML format, and second, the resulting XML is transformed 
into  NED XML by an XML style sheet transformation (XSLT). 
There are commonly available XML tools for both steps. 

Model Libraries 

While OMNeT++ itself does not contain a standard module 
library, it was designed with the expectation in mind that 
libraries of reusable modules will come to existence as soon as 
the software gets more widely deployed. Such libraries would 
contain network protocol models, application and traffic source 
models, etc.  

As of January 2001, the following detailed protocol models 
are available for OMNeT++: TCP (Kaage et al. 2001), IP with 
QoS services (Wehrle et al. 2001), SCSI (also from Karlsruhe), 
FDDI (as part of the package). Simplified models for Ethernet, 
Token Ring, GSM, and file system simulation are also available. 
Further protocol models such as Hyperlan 2 are under 
development. 

Simple Module Programming Model 

Simple modules are the active elements in a model. They are 
atomic elements in the module hierarchy: they cannot be divided 
any further. Simple modules are programmed in C++, using the 

OMNeT++ simulation class library. The simulation kernel does 
not distinguish between messages and events – events are also 
represented as messages. 

Simple modules are programmed using the process-interaction 
method. The user implements the functionality of a simple 
module by subclassing the cSimpleModule class. 
Functionality is added via one of two alternative programming 
models: (1) coroutine-based, and (2) event-processing function.
When using coroutine-based programming, the module code 
runs in its own (non-preemptively scheduled) thread, which 
receives control from the simulation kernel each time the module 
receives an event (=message). The function containing the 
coroutine code will typically never return: usually it contains an 
infinite loop with send and receive calls.  

When using event-processing function, the simulation kernel 
simply calls the given function of the module object with the 
message as argument – the function has to return immediately 
after processing the message. An important difference between 
the coroutine-based and event-processing function programming 
models is that with the former, every simple module needs an 
own CPU stack, which means larger memory requirements for 
the simulation program. This is of interest when the model 
contains a large number of modules (over a few ten thousands). 

It is possible to write code which executes on module 
initialization and finalization: the latter takes place on successful 
simulation termination, and finalization code is mostly used to 
save scalar results into a file. OMNeT++ also supports multi-
stage initialization: situations where model initialization needs 
to be done in several "waves". Multi-stage initialization support 
is missing from most simulation packages (including OPNET 
and ns), and it is usually emulated with broadcast events 
scheduled at zero simulation time, which is a less clean solution. 

Message sending and receiving are the most frequent tasks in 
simple modules. Messages can be sent either via output gates, or 
directly to another module. Modules receive messages either via 
one of the several variations of the receive call (when using 
coroutine-based programming), or messages are delivered to the 
module in an invocation from the simulation kernel (when using 
the event-processing function). 

It is possible to modify the topology of the network 
dynamically: one can create and delete modules and rearrange 
connections while the simulation is executing. Even compound 
modules with parameterized internal topology can be created on 
the fly. 

Design of the Simulation Library 

The OMNeT++ provides a rich object library for simple module 
implementers. There are several distinguishing factors between 
this library and other general-purpose or simulation libraries. 
The OMNeT++ class library provides reflection functionality 
which makes it possible to implement high-level debugging and 



tracing capability, as well as automatic animation on top of it (as 
exemplified by the Tkenv user interface, see later). Memory 
leaks, pointer aliasing and other memory allocation problems are 
common in C++ programs not written by specialists; OMNeT++ 
alleviates this problem by tracking object ownership, doing 
ownership-based automatic deallocations and detecting bugs 
caused by aliased pointers and misuse of shared objects. The 
requirements for ease of use, modularity, open data interfaces 
and support of embedding also heavily influenced the design of 
the class library. 

The consequential use of object-oriented techniques makes 
the simulation kernel very compact and slim: it is not bloated 
with unnecessary functionality and therefore facilitates a 
comprehensive understanding of its internals. This is an 
important argument in promoting OMNeT++ especially, but 
only, for educational use. 

Contents of the Simulation Library 

This section provides a very brief catalog of the classes in the 
OMNeT++ simulation class library. The classes were designed 
to cover most of the common simulation tasks. 

OMNeT++ has the ability to generate random numbers from 
several independent streams. The common distributions are 
supported, and it is possible to add new distributions 
programmed by the user. It is also possible to load user 
distributions defined by histograms.  

The class library offers queues and various other container 
classes. Queues can also operate as priority queues. 

Messages are objects which may hold arbitrary data structures 
and other objects (through aggregation or inheritance), and can 
also embed other messages. 

OMNeT++ supports routing traffic in the network. This 
feature provides the ability to explore actual network topology, 
extract it into a graph data structure, then navigate the graph or 
apply algorithms such as Dijkstra to find shortest paths. 

There are several statistical classes, from simple ones which 
collect the mean and the standard deviation of the samples to a 
number of distribution estimation classes. The latter include 
three highly configurable histogram classes and the 
implementations of the P2 (Jain and Chlamtac 1985) and the k-
split (Varga and Fakhamzadeh 1997) algorithms. It is also 
supported to write time series result data into an output file 
during simulation execution, and there are tools for post-
processing the results. 

Internal Architecture 

OMNeT++ simulation programs possess a modular structure. 
The logical architecture is shown Fig 2. 
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Fig. 2. Logical Architecture of an OMNeT++ Simulation Program 
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Fig. 3. Embedding OMNeT++ 

The Model Component Library consists of the code of compiled 
simple and compound modules. Modules are instantiated and the 
concrete simulation model is built by the simulation kernel and 
class library (Sim) at the beginning of the simulation execution. 
The simulation executes in an environment provided by the user 
interface libraries (Envir, Cmdenv and Tkenv) – this environment 
defines where input data come from, where simulation results go 
to, what happens to debugging output arriving from the 
simulation model, controls the simulation execution, determines 
how the simulation model is visualized and (possibly) animated, 
etc.  

By replacing the user interface libraries, one can customize 
the full environment in which the simulation runs, and even 
embed an OMNeT++ simulation into a larger application (Fig. 
3.). This is made possible by the existence of a generic interface 
between Sim and the user interface libraries, as well as the fact 
that all Sim, Envir, Cmdenv and Tkenv are physically separate 
libraries. It is also possible for the embedding application to 
assemble models from the available module types on the fly – in 
such cases, model topology will often come from a database. 

Animation and Tracing Facility 

An important requirement for OMNeT++ was easy debuggability 
and traceability of simulation models. Associated features are 



implemented in Tkenv, the GUI user interface of OMNeT++. 
Tkenv uses three methods: automatic animation, module output 
windows and object inspectors. Automatic animation (i.e. 
animation without any programming) in OMNeT++ is capable of 
animating the flow of messages on network charts and reflecting 
state changes of the nodes in the display. Automatic animation 
perfectly fits the application area, as network simulation 
applications rarely need fully customizable, programmable 
animation capabilities. 

 

Fig. 4. Screenshot of the Tkenv User Interface of OMNeT++ 

Simple modules may write textual debugging or tracing 
information to a special output stream. Such debug output 
appears in module output windows. It is possible to open 
separate windows for the output of individual modules or module 
groups, so compared to the traditional printf()-style debugging, 
module output windows make it easier to follow the execution of 
the simulation program. 

Further introspection into the simulation model is provided by 
object inspectors. An object inspector is a GUI window 
associated with a simulation object. Object inspectors can be 
used to display the state or contents of an object in the most 
appropriate way (i.e. a histogram object is displayed graphically, 
with a histogram chart), as well as to manually modify the object. 
In OMNeT++, it is automatically possible to inspect every 
simulation object, there is no need to write additional code in the 
simple modules to make use of inspectors. 

It is also possible to turn off the graphical user interface 
altogether, and run the simulation as a pure command-line 
program. This feature is useful for batched simulation runs. 

COMPARISON WITH OTHER SIMULATION TOOLS 

There are numerous network simulation tools on the market 
today, both commercial and non-commercial ones. This section 
gives a very brief overview by picking some of the most 
important or most representative ones in both categories and 

comparing them to OMNeT++: Parsec (Bagrodia et al. 1998), 
SMURPH (Gburzynski 1996), ns (Bajaj et al. 2000), Ptolemy 
(Davis et al. 1999), NetSim++ (Maranda et al. 1996), C++Sim 
(Little and McCue 1993), CLASS (Marsan et al. 1994) as non-
commercial, and OPNET (OPNET Technologies, Inc.), 
EcoPREDICTOR (formerly COMNET III; Compuware Corp.) 
as commercial tools. Among them, OPNET and ns deserve the 
most attention, as they are the most widely accepted and most 
mature packages, targeted roughly at the same segment of 
network simulation as OMNeT++ is. 

The OMNeT++ home page (Varga 1997) contains a list of 
Web sites with collections of references to network simulation 
tools where the reader can get a more complete list. A fairly 
detailed comparison of OMNeT++ vs OPNET and Parsec can be 
found in the OMNeT++ User Manual. 

Programmability 

Does the simulation tool have the necessary power to express 
details in the model? In other words, can the user implement 
arbitrary new building blocks like in OMNeT++ or he is 
confined to the predefined blocks implemented by the supplier? 
Some tools like EcoPREDICTOR are not programmable by the 
user to this extent therefore they cannot be compared to 
OMNeT++. Specialized network simulation tools like CLASS 
(used specifically for ATM research) also rather fall into this 
category.  

Model libraries and available models 

 What protocol models are readily available for the simulation 
tool? OPNET has probably the largest selection of ready-made 
protocol models (including TCP/IP, ATM, Ethernet, etc.). ns 
also has a large number of protocol models, mostly centered 
around TCP/IP. CLASS only supports ATM networks. As it was 
mentioned earlier, OMNeT++ currently has detailed TCP/IP, 
SCSI and FDDI models. 

Support for structured, reusable simulation models 

Does the simulation tool enforce separation of topology and 
functionality? Does it support reusable model components and 
hierarchical models? Network simulation tools naturally share 
the property that a model ("network") consists of "nodes" 
(blocks, entities, modules, etc.) connected by "links" (channels, 
connections, etc.). Some simulation tools (Parsec, C++Sim) do 
not provide explicit support for topology description: in Parsec, 
one must program a "driver entity" which boots the model by 
creating the necessary nodes and interconnecting them. This 
solution does not enforce the separation of defining model 
structure from defining the functionality, and possibilities for 
model component reuse are rather poor. Other tools (ns, CLASS) 



do not allow hierarchy (nesting) in the network, which allows 
less flexibility in the design of the model.  

ns uses Tcl scripts as the means of defining network topology. 
This allows significant flexibility in building the topology, but 
also makes it nearly impossible to create a graphical editor for 
"ns models" in general. 

OPNET allows hierarchical models with arbitrarily deep 
nesting (like OMNeT++), but with some restrictions (namely, the 
"node" level cannot be hierarchical). A significant difference 
from OMNeT++ is that OPNET models are always of fixed 
topology, while OMNeT++’s NED and its graphical editor allow 
parameterized topologies. In OPNET, the preferred way of 
defining network topology is by using the graphical editor. The 
editor stores models in a proprietary binary file format, which 
means in practice that OPNET models are usually difficult to 
generate by program (it requires writing a lengthy C program 
that uses an OPNET API, while OMNeT++ models are simple 
text files which can be generated e.g. with perl). 

Programming the Components 

What is the programming model supported by the simulation 
environment? What functionality does the simulation library 
offer? For programming the components, network simulators 
typically use either a thread/coroutine-based programming model 
(Parsec, C++Sim), or FSMs built upon a message-receiving 
function (OPNET, ns, SMURPH and NetSim++). OMNeT++ is 
the only one among the examined tools which supports both 
programming models. 

The simulation library of Parsec and C++Sim only provide 
very basic functions (like random number generation). OPNET 
and OMNeT++ provide rich simulation libraries of roughly 
comparable functionalities. The OPNET simulation library is 
based on C, while the one in OMNeT++ is a C++ class library. 

Debugging and Tracing Support 

What debugging or tracing facilities does the simulation tool 
offer? Simulation programs are infamous for long debugging 
periods and it is usually difficult to verify if they operate 
correctly, so support for efficient debugging and tracing is an 
important issue. Tracing via log messages (using e.g. printf()) is 
available to all simulation programs. Another useful tool is 
OPNET’s powerful command-line simulation debugger. From 
the three tools OMNeT++ offers for debugging purposes 
(module output windows, inspectors, automatic animation), 
module output windows and inspectors are missing from all 
other fully programmable simulation tools listed, partly due to 
the lack of a graphical runtime environment. Animation, 
however, is supported by several of them.  

All examined simulation environments that support some 
animation do provide automatic animation. Some of them (e.g. 

OPNET) also support customizable animation which OMNeT++ 
does not. Technically, animation comes in three flavors: 
integrated, client-server (i.e. viewer runs as a separate process), 
or off-line (i.e. record & playback). For example, OPNET is 
capable of client-server and off-line animation, NetSim++ and 
Ptolemy supports client-server animation, while ns uses off-line 
animation. OMNeT++ provides integrated animation. All three 
methods have their advantages and disadvantages; however, 
since client-server and off-line animation is difficult to combine 
with object inspectors (none of the listed simulation 
environments attempt to do so), they are significantly less 
efficient for debugging than integrated animation. 

Performance 

What performance can be expected from the simulation? Many 
network simulation scenarios require execution times of several 
hours. Probably the most important factor for execution speed is 
the programming language. C/C++-based simulation tools 
deliver good performance, esp. over Java-based ones. Most 
simulation tools examined (ns, Parsec, OPNET, C++SIM, 
NetSim++, SMURPH, Ptolemy) can be programmed in C, C++, 
or a language based on them. 

Source Availability 

Is the simulation library available in source? The availability of 
the source code is not only necessary for embedding or 
modifying the simulation engine, but often also provides 
significant help in debugging simulation models. Commercial 
tools, and even the non-commercial tool Parsec do not provide 
source code to the simulation kernel (although OPNET ships 
with the sources of the protocol models). OMNeT++ – like ns 
and most other non-commercial tools – is fully open-source. 

CONCLUSIONS 

The paper presented a discrete event simulation system which 
was designed to support the simulation of computer networks, 
parallel and distributed systems. The main advantage of the 
simulation system is that (1) it allows building models "in the 
large", (2) it implements an easy and natural programming 
model, (3) it has a powerful GUI execution environment, and (4) 
it is open-source. The authors feel that OMNeT++ has the 
potential to become a widely used network simulation package in 
academic and research environments.  
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