
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228460521

The OMNET++ discrete event simulation system

Article · January 2001

CITATIONS

1,209
READS

2,475

1 author:

András Varga

Opensim Ltd, Hungary

7 PUBLICATIONS 2,384 CITATIONS

SEE PROFILE

All content following this page was uploaded by András Varga on 25 August 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/228460521_The_OMNET_discrete_event_simulation_system?enrichId=rgreq-450107d751706a64445e0fac190f04ae-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ2MDUyMTtBUzoxMzQwMzAyMDkwNjQ5NjBAMTQwODk2NjcwMDM3Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228460521_The_OMNET_discrete_event_simulation_system?enrichId=rgreq-450107d751706a64445e0fac190f04ae-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ2MDUyMTtBUzoxMzQwMzAyMDkwNjQ5NjBAMTQwODk2NjcwMDM3Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-450107d751706a64445e0fac190f04ae-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ2MDUyMTtBUzoxMzQwMzAyMDkwNjQ5NjBAMTQwODk2NjcwMDM3Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andras-Varga-4?enrichId=rgreq-450107d751706a64445e0fac190f04ae-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ2MDUyMTtBUzoxMzQwMzAyMDkwNjQ5NjBAMTQwODk2NjcwMDM3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andras-Varga-4?enrichId=rgreq-450107d751706a64445e0fac190f04ae-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ2MDUyMTtBUzoxMzQwMzAyMDkwNjQ5NjBAMTQwODk2NjcwMDM3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andras-Varga-4?enrichId=rgreq-450107d751706a64445e0fac190f04ae-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ2MDUyMTtBUzoxMzQwMzAyMDkwNjQ5NjBAMTQwODk2NjcwMDM3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andras-Varga-4?enrichId=rgreq-450107d751706a64445e0fac190f04ae-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ2MDUyMTtBUzoxMzQwMzAyMDkwNjQ5NjBAMTQwODk2NjcwMDM3Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

THE OMNET++ DISCRETE EVENT SIMULATION SYSTEM

András Varga
Department of Telecommunications

Budapest University of Technology and Economics
Pázmány Péter sétány 1/d.
1117 Budapest, Hungary

E-mail: andras@whale.hit.bme.hu

KEYWORDS
discrete simulation, performance analysis, computer systems,
telecommunications, hierarchical

ABSTRACT

The paper introduces OMNeT++, a C++-based discrete event
simulation package primarily targeted at simulating computer
networks and other distributed systems. OMNeT++ is fully
programmable and modular, and it was designed from the
ground up to support modeling very large networks built from
reusable model components. Large emphasis was placed also on
easy traceability and debuggability of simulation models: one
can execute the simulation under a powerful graphical user
interface, which makes the internals of a simulation model fully
visible to the person running the simulation: it displays the
network graphics, animates the message flow and lets the user
peek into objects and variables within the model. These features
make OMNeT++ a good candidate for both research and
educational purposes. The OMNeT++ simulation engine can be
easily embedded into larger applications. OMNeT++ is open-
source, free for non-profit use, and it has a fairly large user
community.

INTRODUCTION

OMNeT++ is a C++-based discrete event simulator for modeling
communication networks, multiprocessors and other distributed
or parallel systems. OMNeT++ is open-source, and it can be
used either under the GNU General Public License or under its
own license that also makes the software free for non-profit use.
The motivation of developing OMNeT++ was to produce a
powerful open-source discrete event simulation tool that can be
used by academic, educational or research-oriented commercial
institutions for the simulation of computer networks and
distributed or parallel systems. OMNeT++ tries to fill the gap
between open-source, research-oriented simulation software such
as ns (Bajaj et al. 2000) and expensive commercial alternatives
like OPNET (OPNET Technologies, Inc.). A later section of this
paper presents a comparison with other simulation packages.
OMNeT++ is available on Unix systems and on Windows, using

the Cygwin or the Microsoft Visual C++ compiler. It should also
be possible to port OMNeT++ to other systems with minor
effort.

OMNeT++ has been available to the public since September
1997, and by now it has a fairly large user community and a
mailing list. Besides anonymous downloads, there have been
registered downloads from over 40 universities worldwide, and
the indicated application areas ranged from mobile/wireless to
ATM and optical networks simulation, and from hardware
simulations to queuing systems. There are a number of
OMNeT++-related projects, such as the development of a
complete TCP/IP model suite at University Karlsruhe (Kaage et
al. 2001; Wehrle et al. 2001), the Remote OMNeT++ project
(Erdei et al. 2001; Wagner and Erdei 2001) for managing remote
simulations on a flock of workstations, and research on parallel
execution, using the Statistical Synchronization Method (Lencse
1997; Lencse 1998).

THE DESIGN OF OMNeT++

OMNeT++ was designed from the beginning to support network
simulation in the large. This objective lead to the following main
design requirements:

• To enable large-scale simulation, simulation models need
to be hierarchical, and should be built from reusable
components as much as possible.

• Simulation programs are infamous for long debugging
periods. Thus, the simulation software should place large
emphasis on easy traceability and debuggability of
simulation models to reduce debugging time. (The same
feature set is also useful for educational use of the
software.)

• The simulation software itself should be modular,
customizable and should allow embedding simulation
models into larger applications such as network planning
software. (Embedding brings additional requirements
about the memory management, restartability, etc. of the
simulation).

• Data interfaces should be open: it should be possible to
generate and process input and output files with
commonly available software tools.

The following sections go through the most important aspects of
OMNeT++, highlighting the design decisions that helped achieve
the above main goals.

Model Structure

An OMNeT++ model consists of modules that communicate
with message passing. The active modules are termed simple
modules; they are written in C++, using the simulation class
library. Simple modules can be grouped into compound modules
and so forth; the number of hierarchy levels is not limited. The
concept of simple and compound modules is similar to DEVS
(Zeigler 1990; Chow and Zeigler 1994) atomic and coupled
models. Messages can be sent either via connections that span
between modules, or directly to their destination modules.

Both simple and compound modules are instances of module
types. While describing the model, the user defines module
types; instances of these module types serve as components for
more complex module types. Finally, the user creates the system
module as an instance of a previously defined module type.
When a module type is used as a building block, there is no
distinction whether it is a simple or a compound module. This
allows the user to transparently split a simple module into
several simple modules within a compound module, or do the
opposite, re-implement the functionality of a compound module
in one simple module, without affecting existing users of the
module type.

Fig. 1. Model Structure in OMNeT++. Boxes represent simple modules
(thick border), and compound modules (thin border). Arrows

connecting small boxes represent connections and gates.

Modules communicate with messages which – in addition to
usual attributes such as timestamp – may contain arbitrary data.
Simple modules typically send messages via gates, but it is also
possible to send them directly to their destination modules. Gates
are the input and output interfaces of modules: messages are sent
out through output gates and arrive through input gates. An input
and an output gate can be linked with a connection. Connections
are created within a single level of module hierarchy: within a
compound module, corresponding gates of two submodules, or a

gate of one submodule and a gate of the compound module can
be connected. Due to the hierarchical structure of the model,
messages typically travel through a chain of connections, to start
and arrive in simple modules. Compound modules act as
'cardboard boxes' in the model, transparently relaying messages
between their inside and the outside world. Connections can be
assigned properties such as propagation delay, data rate and bit
error rate. One can also define connection types with specific
properties (termed channels) and reuse them in several places.

Modules can have parameters. Parameters are mainly used to
pass configuration data to simple modules, and to help define
model topology. Parameters may take string, numeric or pointer
values. Because parameters are represented as objects in the
program, parameters – in addition to holding constants – may
transparently act as sources of random numbers with the actual
distributions provided with the model configuration, they may
interactively prompt the user for the value, and they might also
hold expressions referencing other parameters. Compound
modules may pass parameters or expressions of parameters to
their submodules. Parameters can be passed by value or by
reference. Parameters taken by reference may be used to
propagate global model parameter changes during simulation
execution – this technique might be very useful in certain
simulation scenarios such as parameter optimization.

The Design of the NED Language

The user defines the structure of the model (the modules and
their interconnection) in OMNeT++'s topology description
language, NED. Typical ingredients of a NED description are
simple module declarations, compound module definitions and
network definitions. Simple module declarations describe the
interface of the module: gates and parameters. Compound
module definitions consist of the declaration of the module's
external interface (gates and parameters), and the definition of
submodules and their interconnection. A network definition
basically defines a model as an instance of a module type.

NED and the OMNeT++ model structure were designed to
allow building models "in the large": they promote reusable
model components via module types and unlimited compound
module hierarchy levels. NED also supports partitioning large
NED files into several smaller ones via file inclusion.

The OMNeT++ package includes a graphical editor which
uses NED as its native file format; moreover, the editor can work
with arbitrary, even hand-written NED code. The editor is a fully
two-way tool, i.e. the user can edit the network topology either
graphically or in NED source view, and switch between the two
views at any time. This is made possible by design decisions
about the NED language itself. First, NED is a declarative
language, and as such, it does not use an imperative
programming language for defining the internal structure of a
compound module. Allowing arbitrary programming constructs
would make it practically infeasible to write two-way graphical

editors which could work directly with both generated and hand-
made NED files. (Generally, the editor would need AI capability
to understand the code.)

Most graphical editors only allow the creation of fixed
topologies. However, NED contains declarative constructs
(resembling loops and conditionals in imperative languages),
which enable parameterizing topologies: it is possible to create
common regular topologies such as ring, grid, star, tree,
hypercube, or random interconnection whose parameters (size,
etc.) are passed in numeric-valued parameters. The potential of
parameterized topologies and associated design patterns have
been investigated in (Varga and Pongor 1997) and (Varga 1998).
With parameterized topologies, NED holds an advantage in
many simulation scenarios both over OPNET where only fixed
model topologies can be designed, and over ns where building
model topology is programmed in Tcl and often intermixed with
simulation logic, so it is generally impossible to write graphical
editors which could work with existing, hand-written code.

The NED language can be mapped one-to-one to XML; the
graphical editor is capable of exporting and importing XML
files. As XML is rapidly becoming the preferred way of
exchanging structured information between applications, the
existence of an XML binding for NED means greater
opportunities for interfacing OMNeT++ with other systems. As
an example, a network topology stored in an SQL database by a
network management program can be imported into OMNeT++
in two steps. First, topology data are extracted from the database
in XML format, and second, the resulting XML is transformed
into NED XML by an XML style sheet transformation (XSLT).
There are commonly available XML tools for both steps.

Model Libraries

While OMNeT++ itself does not contain a standard module
library, it was designed with the expectation in mind that
libraries of reusable modules will come to existence as soon as
the software gets more widely deployed. Such libraries would
contain network protocol models, application and traffic source
models, etc.

As of January 2001, the following detailed protocol models
are available for OMNeT++: TCP (Kaage et al. 2001), IP with
QoS services (Wehrle et al. 2001), SCSI (also from Karlsruhe),
FDDI (as part of the package). Simplified models for Ethernet,
Token Ring, GSM, and file system simulation are also available.
Further protocol models such as Hyperlan 2 are under
development.

Simple Module Programming Model

Simple modules are the active elements in a model. They are
atomic elements in the module hierarchy: they cannot be divided
any further. Simple modules are programmed in C++, using the

OMNeT++ simulation class library. The simulation kernel does
not distinguish between messages and events – events are also
represented as messages.

Simple modules are programmed using the process-interaction
method. The user implements the functionality of a simple
module by subclassing the cSimpleModule class.
Functionality is added via one of two alternative programming
models: (1) coroutine-based, and (2) event-processing function.
When using coroutine-based programming, the module code
runs in its own (non-preemptively scheduled) thread, which
receives control from the simulation kernel each time the module
receives an event (=message). The function containing the
coroutine code will typically never return: usually it contains an
infinite loop with send and receive calls.

When using event-processing function, the simulation kernel
simply calls the given function of the module object with the
message as argument – the function has to return immediately
after processing the message. An important difference between
the coroutine-based and event-processing function programming
models is that with the former, every simple module needs an
own CPU stack, which means larger memory requirements for
the simulation program. This is of interest when the model
contains a large number of modules (over a few ten thousands).

It is possible to write code which executes on module
initialization and finalization: the latter takes place on successful
simulation termination, and finalization code is mostly used to
save scalar results into a file. OMNeT++ also supports multi-
stage initialization: situations where model initialization needs
to be done in several "waves". Multi-stage initialization support
is missing from most simulation packages (including OPNET
and ns), and it is usually emulated with broadcast events
scheduled at zero simulation time, which is a less clean solution.

Message sending and receiving are the most frequent tasks in
simple modules. Messages can be sent either via output gates, or
directly to another module. Modules receive messages either via
one of the several variations of the receive call (when using
coroutine-based programming), or messages are delivered to the
module in an invocation from the simulation kernel (when using
the event-processing function).

It is possible to modify the topology of the network
dynamically: one can create and delete modules and rearrange
connections while the simulation is executing. Even compound
modules with parameterized internal topology can be created on
the fly.

Design of the Simulation Library

The OMNeT++ provides a rich object library for simple module
implementers. There are several distinguishing factors between
this library and other general-purpose or simulation libraries.
The OMNeT++ class library provides reflection functionality
which makes it possible to implement high-level debugging and

tracing capability, as well as automatic animation on top of it (as
exemplified by the Tkenv user interface, see later). Memory
leaks, pointer aliasing and other memory allocation problems are
common in C++ programs not written by specialists; OMNeT++
alleviates this problem by tracking object ownership, doing
ownership-based automatic deallocations and detecting bugs
caused by aliased pointers and misuse of shared objects. The
requirements for ease of use, modularity, open data interfaces
and support of embedding also heavily influenced the design of
the class library.

The consequential use of object-oriented techniques makes
the simulation kernel very compact and slim: it is not bloated
with unnecessary functionality and therefore facilitates a
comprehensive understanding of its internals. This is an
important argument in promoting OMNeT++ especially, but
only, for educational use.

Contents of the Simulation Library

This section provides a very brief catalog of the classes in the
OMNeT++ simulation class library. The classes were designed
to cover most of the common simulation tasks.

OMNeT++ has the ability to generate random numbers from
several independent streams. The common distributions are
supported, and it is possible to add new distributions
programmed by the user. It is also possible to load user
distributions defined by histograms.

The class library offers queues and various other container
classes. Queues can also operate as priority queues.

Messages are objects which may hold arbitrary data structures
and other objects (through aggregation or inheritance), and can
also embed other messages.

OMNeT++ supports routing traffic in the network. This
feature provides the ability to explore actual network topology,
extract it into a graph data structure, then navigate the graph or
apply algorithms such as Dijkstra to find shortest paths.

There are several statistical classes, from simple ones which
collect the mean and the standard deviation of the samples to a
number of distribution estimation classes. The latter include
three highly configurable histogram classes and the
implementations of the P2 (Jain and Chlamtac 1985) and the k-
split (Varga and Fakhamzadeh 1997) algorithms. It is also
supported to write time series result data into an output file
during simulation execution, and there are tools for post-
processing the results.

Internal Architecture

OMNeT++ simulation programs possess a modular structure.
The logical architecture is shown Fig 2.

SIM
(simulation

kernel)

ENVIR
(user interface
common base)

main()

CMDENV,
or TKENV
(one of the

concrete user
interfaces) Simulation

Model

Model Component
Library

(simple & compound
module types, etc.)

OMNeT++ executable

Fig. 2. Logical Architecture of an OMNeT++ Simulation Program

SIM
(sim. kernel) Simulation

Model

Model Component
Library

Embedding Application

other parts of the
embedding application

OMNeT++ subsystem

Fig. 3. Embedding OMNeT++

The Model Component Library consists of the code of compiled
simple and compound modules. Modules are instantiated and the
concrete simulation model is built by the simulation kernel and
class library (Sim) at the beginning of the simulation execution.
The simulation executes in an environment provided by the user
interface libraries (Envir, Cmdenv and Tkenv) – this environment
defines where input data come from, where simulation results go
to, what happens to debugging output arriving from the
simulation model, controls the simulation execution, determines
how the simulation model is visualized and (possibly) animated,
etc.

By replacing the user interface libraries, one can customize
the full environment in which the simulation runs, and even
embed an OMNeT++ simulation into a larger application (Fig.
3.). This is made possible by the existence of a generic interface
between Sim and the user interface libraries, as well as the fact
that all Sim, Envir, Cmdenv and Tkenv are physically separate
libraries. It is also possible for the embedding application to
assemble models from the available module types on the fly – in
such cases, model topology will often come from a database.

Animation and Tracing Facility

An important requirement for OMNeT++ was easy debuggability
and traceability of simulation models. Associated features are

implemented in Tkenv, the GUI user interface of OMNeT++.
Tkenv uses three methods: automatic animation, module output
windows and object inspectors. Automatic animation (i.e.
animation without any programming) in OMNeT++ is capable of
animating the flow of messages on network charts and reflecting
state changes of the nodes in the display. Automatic animation
perfectly fits the application area, as network simulation
applications rarely need fully customizable, programmable
animation capabilities.

Fig. 4. Screenshot of the Tkenv User Interface of OMNeT++

Simple modules may write textual debugging or tracing
information to a special output stream. Such debug output
appears in module output windows. It is possible to open
separate windows for the output of individual modules or module
groups, so compared to the traditional printf()-style debugging,
module output windows make it easier to follow the execution of
the simulation program.

Further introspection into the simulation model is provided by
object inspectors. An object inspector is a GUI window
associated with a simulation object. Object inspectors can be
used to display the state or contents of an object in the most
appropriate way (i.e. a histogram object is displayed graphically,
with a histogram chart), as well as to manually modify the object.
In OMNeT++, it is automatically possible to inspect every
simulation object, there is no need to write additional code in the
simple modules to make use of inspectors.

It is also possible to turn off the graphical user interface
altogether, and run the simulation as a pure command-line
program. This feature is useful for batched simulation runs.

COMPARISON WITH OTHER SIMULATION TOOLS

There are numerous network simulation tools on the market
today, both commercial and non-commercial ones. This section
gives a very brief overview by picking some of the most
important or most representative ones in both categories and

comparing them to OMNeT++: Parsec (Bagrodia et al. 1998),
SMURPH (Gburzynski 1996), ns (Bajaj et al. 2000), Ptolemy
(Davis et al. 1999), NetSim++ (Maranda et al. 1996), C++Sim
(Little and McCue 1993), CLASS (Marsan et al. 1994) as non-
commercial, and OPNET (OPNET Technologies, Inc.),
EcoPREDICTOR (formerly COMNET III; Compuware Corp.)
as commercial tools. Among them, OPNET and ns deserve the
most attention, as they are the most widely accepted and most
mature packages, targeted roughly at the same segment of
network simulation as OMNeT++ is.

The OMNeT++ home page (Varga 1997) contains a list of
Web sites with collections of references to network simulation
tools where the reader can get a more complete list. A fairly
detailed comparison of OMNeT++ vs OPNET and Parsec can be
found in the OMNeT++ User Manual.

Programmability

Does the simulation tool have the necessary power to express
details in the model? In other words, can the user implement
arbitrary new building blocks like in OMNeT++ or he is
confined to the predefined blocks implemented by the supplier?
Some tools like EcoPREDICTOR are not programmable by the
user to this extent therefore they cannot be compared to
OMNeT++. Specialized network simulation tools like CLASS
(used specifically for ATM research) also rather fall into this
category.

Model libraries and available models

 What protocol models are readily available for the simulation
tool? OPNET has probably the largest selection of ready-made
protocol models (including TCP/IP, ATM, Ethernet, etc.). ns
also has a large number of protocol models, mostly centered
around TCP/IP. CLASS only supports ATM networks. As it was
mentioned earlier, OMNeT++ currently has detailed TCP/IP,
SCSI and FDDI models.

Support for structured, reusable simulation models

Does the simulation tool enforce separation of topology and
functionality? Does it support reusable model components and
hierarchical models? Network simulation tools naturally share
the property that a model ("network") consists of "nodes"
(blocks, entities, modules, etc.) connected by "links" (channels,
connections, etc.). Some simulation tools (Parsec, C++Sim) do
not provide explicit support for topology description: in Parsec,
one must program a "driver entity" which boots the model by
creating the necessary nodes and interconnecting them. This
solution does not enforce the separation of defining model
structure from defining the functionality, and possibilities for
model component reuse are rather poor. Other tools (ns, CLASS)

do not allow hierarchy (nesting) in the network, which allows
less flexibility in the design of the model.

ns uses Tcl scripts as the means of defining network topology.
This allows significant flexibility in building the topology, but
also makes it nearly impossible to create a graphical editor for
"ns models" in general.

OPNET allows hierarchical models with arbitrarily deep
nesting (like OMNeT++), but with some restrictions (namely, the
"node" level cannot be hierarchical). A significant difference
from OMNeT++ is that OPNET models are always of fixed
topology, while OMNeT++’s NED and its graphical editor allow
parameterized topologies. In OPNET, the preferred way of
defining network topology is by using the graphical editor. The
editor stores models in a proprietary binary file format, which
means in practice that OPNET models are usually difficult to
generate by program (it requires writing a lengthy C program
that uses an OPNET API, while OMNeT++ models are simple
text files which can be generated e.g. with perl).

Programming the Components

What is the programming model supported by the simulation
environment? What functionality does the simulation library
offer? For programming the components, network simulators
typically use either a thread/coroutine-based programming model
(Parsec, C++Sim), or FSMs built upon a message-receiving
function (OPNET, ns, SMURPH and NetSim++). OMNeT++ is
the only one among the examined tools which supports both
programming models.

The simulation library of Parsec and C++Sim only provide
very basic functions (like random number generation). OPNET
and OMNeT++ provide rich simulation libraries of roughly
comparable functionalities. The OPNET simulation library is
based on C, while the one in OMNeT++ is a C++ class library.

Debugging and Tracing Support

What debugging or tracing facilities does the simulation tool
offer? Simulation programs are infamous for long debugging
periods and it is usually difficult to verify if they operate
correctly, so support for efficient debugging and tracing is an
important issue. Tracing via log messages (using e.g. printf()) is
available to all simulation programs. Another useful tool is
OPNET’s powerful command-line simulation debugger. From
the three tools OMNeT++ offers for debugging purposes
(module output windows, inspectors, automatic animation),
module output windows and inspectors are missing from all
other fully programmable simulation tools listed, partly due to
the lack of a graphical runtime environment. Animation,
however, is supported by several of them.

All examined simulation environments that support some
animation do provide automatic animation. Some of them (e.g.

OPNET) also support customizable animation which OMNeT++
does not. Technically, animation comes in three flavors:
integrated, client-server (i.e. viewer runs as a separate process),
or off-line (i.e. record & playback). For example, OPNET is
capable of client-server and off-line animation, NetSim++ and
Ptolemy supports client-server animation, while ns uses off-line
animation. OMNeT++ provides integrated animation. All three
methods have their advantages and disadvantages; however,
since client-server and off-line animation is difficult to combine
with object inspectors (none of the listed simulation
environments attempt to do so), they are significantly less
efficient for debugging than integrated animation.

Performance

What performance can be expected from the simulation? Many
network simulation scenarios require execution times of several
hours. Probably the most important factor for execution speed is
the programming language. C/C++-based simulation tools
deliver good performance, esp. over Java-based ones. Most
simulation tools examined (ns, Parsec, OPNET, C++SIM,
NetSim++, SMURPH, Ptolemy) can be programmed in C, C++,
or a language based on them.

Source Availability

Is the simulation library available in source? The availability of
the source code is not only necessary for embedding or
modifying the simulation engine, but often also provides
significant help in debugging simulation models. Commercial
tools, and even the non-commercial tool Parsec do not provide
source code to the simulation kernel (although OPNET ships
with the sources of the protocol models). OMNeT++ – like ns
and most other non-commercial tools – is fully open-source.

CONCLUSIONS

The paper presented a discrete event simulation system which
was designed to support the simulation of computer networks,
parallel and distributed systems. The main advantage of the
simulation system is that (1) it allows building models "in the
large", (2) it implements an easy and natural programming
model, (3) it has a powerful GUI execution environment, and (4)
it is open-source. The authors feel that OMNeT++ has the
potential to become a widely used network simulation package in
academic and research environments.

ACKNOWLEDGMENTS

The author would like to thank the Department of
Telecommunications, Technical University of Budapest, and
especially Dr. György Pongor for supporting the development of

OMNeT++. The author also acknowledges Gábor Lencse for his
helping hand on numerous occasions.

REFERENCES

Varga, A. 1997. OMNeT++ Home Page.
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

Kaage, U., V. Kahmann, F. Jondral. 2001. ”An OMNeT++ TCP
Model”. To appear in Proceedings of the European Simulation
Multiconference (ESM 2001), June 7-9, Prague.

Wehrle, K, J. Reber, V. Kahmann. 2001. “A Simulation Suite for
Internet Nodes with the Ability to Integrate Arbitrary Quality of
Service Behavior”. In Proceedings of the Communication
Networks and Distributed Systems Modeling and Simulation
Conference 2001, Phoenix (AZ), USA, January 7-11.

Erdei, M., A. Wagner, K. Sója, M. Székely. 2001. “A Networked
Remote Simulation Architecture and its Remote OMNeT++
Implementation”. To appear in Proceedings of the European
Simulation Multiconference (ESM 2001), June 7-9, Prague.

Wagner, A., M. Erdei. 2001. “Agent-Based Resource Management for
Remote Simulation Systems and an Implementation for Remote
OMNeT++”. To appear in Proceedings of the European
Simulation Multiconference (ESM 2001), June 7-9, Prague.

Zeigler, B. 1990. Object-oriented Simulation with Hierarchical,
Modular Models. Academic Press.

Chow, A and B. Zeigler. 1994. “Revised DEVS: A Parallel,
Hierarchical, Modular Modeling Formalism”. In Proceedings of
the Winter Simulation Conference, Lake Buena Vista, FL.

Varga, A. and Gy. Pongor. 1997. “Flexible Topology Description
Language for Simulation Programs”. In Proceedings of the 9th
European Simulation Symposium (ESS’97), pp.225-229, Passau,
Germany, October 19-22.

Varga, A and B. Fakhamzadeh. 1997. “The K-Split Algorithm for the
PDF Approximation of Multi-Dimensional Empirical Distributions
without Storing Observations”. In Proc. of the 9th European
Simulation Symposium (ESS’97), pp.94-98. October 19-22, Passau,
Germany.

Varga, A. 1998. “Parameterized Topologies for Simulation Programs”.
In Proceedings of the Western Multiconference on Simulation
(WMC’98), Communication Networks and Distributed Systems
(CNDS’98). San Diego, CA, January 11-14.

Jain, R, and I. Chlamtac. 1985. “The P2 Algorithm for Dynamic
Calculation of Quantiles and Histograms Without Storing
Observations”. Communications of the ACM, 28, no.10 (Oct.):
1076-1085.

Lencse, G. 1997. “Efficient Simulation of Large Systems - Transient
Behaviour and Accuracy”. In Proc. of the 9th European
Simulation Symposium (ESS’97). October 19-22, Passau,
Germany.

Lencse, G. 1998. “Efficient Parallel Simulation with the Statistical
Synchronization Method”. In Proceedings of the Western
Multiconference on Simulation (WMC’98), Communication
Networks and Distributed Systems (CNDS’98). January 11-14, San
Diego, CA.

Bajaj, S., L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M.
Handley, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S.
McCanne, R. Rejaie, P. Sharma, K. Varadhan, Y. Xu, H. Yu and
D. Zappala. 2000. “Improving simulation for network research”.

IEEE Computer. (to appear, a preliminary draft is currently
available as USC technical report 99-702)

Bagrodia, R, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, B. Park,
H. Song. 1998. “Parsec: A Parallel Simulation Environment for
Complex Systems”, Computer, Vol. 31(10), October, pp. 77-85.

Little, M. C. and D. L. McCue. 1993. “Construction and Use of a
Simulation Package in C++”. Computing Science Technical
Report, University of Newcastle upon Tyne, Number 437, July
(also appeared in the C User’s Journal Vol. 12 Number 3, March
1994).

Marsan, M A, R. Lo Cigno, M. Munafò, A. Tonietti. 1994. “Simulation
of ATM Computer Networks with CLASS”. In Proceedings of the
7th International Conference on Modeling Techniques and Tools
for Computer Performance Evaluation, Vienna, Austria, May 4-6.

Gburzynski, P. 1996. Protocol Design for Local and Metropolitan Area
Networks. Prentice Hall.

Davis, J, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L.
Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay and Y.
Xiong. 1999. “Overview of the Ptolemy Project”. ERL Technical
Report UCB/ERL No. M99/37, Dept. EECS, University of
California, Berkeley, CA 94720, July.

OPNET Technologies, Inc. OPNET Modeler. http://www.opnet.com
Compuware Corp., EcoPREDICTOR.

http://www.compuware.com/products/ecosystems/ecopredictor
Maranda, A., R. Ghilea, E. Lazar. 1996. “Project NetSim++: A

Switched Packets Network Simulator”. In Proceedings of
ROSE’96, the 4th Romanian Open Systems Conference, Bucharest,
Oct.

AUTHOR BIOGRAPHY

ANDRÁS VARGA received his M.Sc. degree in computer
science from the Faculty of Electrical Engineering and
Informatics, Technical University of Budapest in 1994. Between
1994 and 1998 he was doing Ph.D. studies at the Department of
Telecommunications. His research interests include discrete
event simulation of large communication systems, nonparametric
density estimation and parallel discrete event simulation.
Currently he is employed by Brokat Technologies in Budapest.

View publication statsView publication stats

https://www.researchgate.net/publication/228460521

