
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320196248

From Monolithic To Modern Software Development: An approach to migrate

and scale legacy applications using software containers, microservices and

cloud computing

Conference Paper · September 2017

CITATIONS

0
READS

358

4 authors:

Some of the authors of this publication are also working on these related projects:

BigGIS View project

PartSense View project

Marius Krämer

Karlsruhe University of Applied Sciences

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Patrick Wiener

Bosch

11 PUBLICATIONS 92 CITATIONS

SEE PROFILE

Andreas Abecker

disy Informationssysteme GmbH

250 PUBLICATIONS 3,846 CITATIONS

SEE PROFILE

Jens Nimis

Karlsruhe University of Applied Sciences

64 PUBLICATIONS 1,164 CITATIONS

SEE PROFILE

All content following this page was uploaded by Patrick Wiener on 24 November 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/320196248_From_Monolithic_To_Modern_Software_Development_An_approach_to_migrate_and_scale_legacy_applications_using_software_containers_microservices_and_cloud_computing?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320196248_From_Monolithic_To_Modern_Software_Development_An_approach_to_migrate_and_scale_legacy_applications_using_software_containers_microservices_and_cloud_computing?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/BigGIS?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PartSense?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marius-Kraemer?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marius-Kraemer?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Karlsruhe_University_of_Applied_Sciences?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marius-Kraemer?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Wiener-2?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Wiener-2?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Bosch?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Wiener-2?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Abecker?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Abecker?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Abecker?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jens-Nimis?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jens-Nimis?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Karlsruhe_University_of_Applied_Sciences?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jens-Nimis?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Wiener-2?enrichId=rgreq-5b520db12484026bf7af45a465d43855-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NjI0ODtBUzo1NjQxNDk5NjEwODQ5MjhAMTUxMTUxNTI0MDk5OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

CERC 2017

From Monolithic To Modern Software Development
An approach to migrate and scale legacy applications using software containers, microservices

and Cloud Computing

Marius Krämer1, Patrick Wiener1, Andreas Abecker2 and Jens Nimis1

 Faculty of Management Science and Engineering
1Karlsruhe University of Applied Sciences

2Disy Informationssysteme GmbH
me@mariuskraemer.com

Keywords: Software Container, Microservices, Cloud-based Scaling, Software-as-a-Service

Digitalization is one major trend in the industry at which big data, cloud computing or artificial
intelligence define the cornerstones of new business models. Today, more often than not, a myriad
of software companies lack corresponding strategies to modernize their monolithic application stack
due to predominant scepticism about new technologies as well as new development approaches.
However, to foster a competitive and innovative market position, it is inevitable to migrate from
monolithic to modern software development. The related challenges when dealing with monolithic
applications are threefold, including the (1) deployment, (2) update process and (3) scaling of
individual components, which make improvements in organizing, operating and scaling necessary.
Some of those challenges include local installations, cross checking existing references and
libraries when updating, or not knowing which piece of code is located in which part of the
application. Monolithic applications tend to be huge collections of code thus requiring a lot of effort
when scaling. While many software companies successfully apply modern technologies and
strategies to move towards distributed systems and cloud-native applications there are still a lot of
competitors following a traditional monolithic approach for software development.

Our goal is to develop a generic concept that addresses the presented challenges by leveraging three
key technologies, namely (1) software containers, (2) microservices and (3) cloud-based scaling to
modernize legacy applications eventually operating as a Software-as-a-Service (SaaS). While it is
not necessarily required to apply these technologies and architectural design, they greatly intertwine
and are beneficial for the overall transformation process. The three stages of the concept that evolve
around the aforementioned cornerstones are described in the following as depicted in Figure 1.

The first stage uses software containers as a fundamental building block. A containerised monolith
allows for the use of Container-as-a-Service, which is defined as a forth cloud computing service
level that unites developing, deploying, updating and running applications (Burns, 2015). The
containerisation process of the application is exemplified using Docker1, demonstrating that a
monolith can be dockerised without further changes to its architecture, as shown in Figure 1.

In the second stage, we introduce microservices to the concept. With microservices there is the need
to introduce organizational changes to a development process, by using concepts like agile and lean
development (Anderson, 2003) such as an iterative SCRUM (Schwaber, 2004) process instead of
the commonly known waterfall approach (Bell & Thayer, 1976).

1 https://www.docker.com/

CERC 2017

Fig. 1 Approach to migrate and scale legacy applications using software containers, microservices and cloud computing.

Three different approaches can be used to transform an application's architecture into multiple
microservices. The first approach is based on the law of holes meaning that if in an untenable
position, it is best to stop carrying on and exacerbating the situation (Healy, 2013). Thus, new
functionalities and features are attached to the monolith as additional microservices by using an
API, as shown in Figure 1 by microservice “E”. The second approach separates front- and backend,
but is only applicable to some special use cases, which is why this approach is not further discussed.
The most common approach can be called “extract don't expand”. It combines the first approach by
gradually extracting existing services from the monolith and attaching them as microservices, as
shown in Figure 1 by extracting functionality “A” from the monolith and re-attaching as a
microservice. To decide on the order of extraction, we developed a prioritisation matrix.

The third stage centres around scaling an application in a hybrid or entirely cloud-based
environment. We evaluate existing scaling mechanisms, which are used in practice and are
currently under development in research (Xiao et al., 2014; AWS, 2017; Scalr, 2017). One example
is the prediction-based scaling mechanism Scryer, developed by Netflix (Jacobson et al., 2013). We
leverage different scaling mechanisms to design a holistic approach to scale applications including
(1) decision-based scaling, (2) reactive scaling and (3) predictive scaling element, as represented by
the scaling engine “S” in Figure 1. The decision-based scaling enables the user to scale an
application based on guidelines across a hybrid environment. The reactive scaling element scales an
application based on metrics of the current workload. The predictive scaling element uses past
metrics to scale an application in advance of the arising workload. An automatic scaling mechanism
further requires a routing service, which is represented by the element “R” in Figure 1.

Eventually, the three key technologies can be combined to easily migrate into a SaaS-model. Any
combination showed as valid and brings significant benefits to deploying, updating and scaling an

CERC 2017

application. For example, it is more efficient to scale the service, on which the actual workload
appears, instead of scaling the entire monolithic application. Containerised microservices make this
scaling even faster and allow for a clear separation between services and the monolith. The final
decision is about deploying the newly formed application with in a single or multi-tenant
architecture. With multiple iterations of all three key technologies it is possible to successfully
transform a monolithic application into a SaaS-ready application, as shown in the final architecture
in Figure 1.

We conducted a proof of concept in cooperation with a local software company to modernize their
monolithic application design. The monolith includes a desktop and a web application, while the
company’s long-term goal is to develop an independent web application. At first the monolith was
containerised and could be deployed as a Docker container. In a first step, the web monolith was
extracted, which was consequently missing some functionalities from the desktop application. We
identified the needed modules in the desktop application and prioritised them for extraction
according to the proposed prioritisation matrix. We evaluated a common use case, in which the
traffic will randomly exceed the applications capacities. The usual scaling approach was to
manually start new instances. We showed how to displace this approach with an automatic scaling
mechanism. A second use case features the seasonal customer base, which uses the application
mainly for 3 months of the year. In addition to that the main traffic is generated at two fixed times
of the day. A predictive scaling mechanism can greatly improve this use case. As a forth step we
stated how to combine all technologies and how to deploy the application in a SaaS-model, using a
single-tenant architecture.

This work is not only a generic conceptual guidance for companies to modernize their legacy
software but further proves that the new technologies and development approaches can be used to
cope with the presented challenges. Despite the initial success, the concept still needs some further
testing and adjustment. Hence, supplementary research will focus on deploying the concept to a
wide range of use cases and refining the individual stages.

References

Anderson, David J. (2003). Agile Management for Software Engineering: Applying the Theory of Constraints for Business Results.
Pearson Education.

AWS (2017). Auto Scaling Documentation. Available at https://aws.amazon.com/de/documentation/autoscaling/ [24.08.2017].

Bell, T. E. & Thayer, T. A. (1976). Software requirements: Are they really a problem?, Proc. 2nd Int. Conf. on Software engineering.
IEEE Computer Society Press.

Burns, Brendan. (2015). Brendan Burns, Google: An Overview of Kubernetes. Available at
https://soundcloud.com/thenewstackmakers/brent-butler-of-google-gives-an-overview-of-kubernetes [24.08.2017].

Healy, Dennis (1996). Healy’s First Law of Holes is to stop digging. Available at https://business.highbeam.com/794/article-1G1-
19124747/healey-first-law-holes-stop-digging-so-he-believes [24.08.2017].

Jacobson, D., Yuan, D. & Joshi, N. (2013). Scryer: Netflix’s Predictive Auto Scaling Engine. The Netflix Tech Blog. Available at
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270 [24.08.2017].

Scalr (2017). Documentation. Available at https://scalr-wiki.atlassian.net/wiki/ [24.08.2017].

Schwaber, K. (2004). Agile Project Management with Scrum. Microsoft Press. Redmond, Washington.

Xiao, Z., Chen, Q. & Luo, H. (2014). Automatic Scaling of Internet Applications for Cloud Computing Services, in: IEEE
Transactions on Computers, vol. 63, no. 5, pp. 1111-1123.

View publication stats

https://www.researchgate.net/publication/320196248

